
Lamberto Tronchin - pag.  

 

1 

 

 

 
 
 
 
 
 

THE CALCULATION OF THE IMPULSE RESPONSE 
IN THE BINAURAL TECHNIQUE  

 

 
Lamberto Tronchin*,**, Angelo Farina**, Michele Pontillo*, Valerio Tarabusi* 

 
                 * DIENCA - CIARM , University of Bologna, Viale Risorgimento 2  -  40136 Bologna Italy 
               ** Ind. Eng. Dept., University of Parma, Viale delle Scienze  -  43100 Parma, Italy 

 

E-MAIL: mailto: tronchin@ciarm.ing.unibo.it 
 
Abstract 

The importance of the head of a listener to influence the sound that reaches his ears proved a not 
negligible component among those intervening to modify it during its way. In particular the absorption 
and the reflection of the skin, the diffraction of the nose and, above all, the “coding” inserted by the 
auricle, are able to equalise (both in frequency and in phase) the original signal, creating the 
presupposition for a better interpretation by the brain. The traditional recording techniques, achieved 
using conventional microphones, are not able to treat with respect those effects, missing so precious 
information at the origination. Vice versa binaural techniques (but also other, as the interesting 
Ambisonics), achieved by special dummy-heads, are able to preserve them, allowing their fruition 
during the reproduction, through the use of headphones; the advantages in terms of sound 
tridimensionality are considerable. In this paper the binaural representation of calculated impulse 
responses is mathematically analysed. By defining "azimuth" and "elevation" angles, the reciprocal 
orientation between sound source and receiver has been mathematically obtained and tested. 
 

INTRODUCTION 
 
At the basis of binaural techniques is the “Transfer Function” (TFs) concept, that is a powerful 
mathematical (but also data processing) instrument able to characterise the acoustical response of a 
specific object at a definite solicitation. To have its TFs, measured in different conditions, and to 
implement them in prediction software means can calculate the effects of its presence without to place it 
in the condition where it should be during the real event. Many measures about Head-Related Transfer 
Function (HRTF) was done at the M.I.T. [1].  

To choose the appropriate HRTFs fundamental is the calculation of the Elevation and Azimuth 
angles that the sound ray coming from the source forms with the listener head; by them is possible to 
choose the HRTFs to use in the filtering of the signals arrived to his ears, including so the alterations 
caused by his own head.  

 

GEOMETRICAL ANALYSIS 
 

To be able to describe how to execute the calculation of the angles is necessary to decide which 
reference frames to consider. There are two reference frames: one absolute (XYZ), in which is described 
all the geometry of the room, and one relative (X'Y'Z'), integral with the receiver. 
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As regards the first the source is positioned in Osource ≡ (Xsource, Ysource, Zsource), whereas the 
receiver is positioned in Orec ≡ (Xrec, Yrec, Zrec) and it is directed to a target point Ptarg ≡ (Xt, Yt, Zt).  

The reference frame integral with the receiver has point of origin in Orec, ideally in the barycentre 
of his head. The three orthogonal axes are so defined: axis X' passing through Orec and leading to the 
nose vertex (on this axis there is the target point Ptarg); axis Y' passing through Orec and leading to the 
left ear (this axis is always parallel with the absolute plane XY, because the two ears are always at the 
same height) and axis Z' passing through Orec and leading to the top of the head. The provenience point 
of the sound ray has coordinates Pprov ≡ (Xprov, Yprov, Zprov). 

The two angle to calculate are so defined: 

− Elevation angle ϕϕϕϕ (fig. 4) is the angle formed between the X'Y' plane and the u sound ray vector; 
it is the complementary angle of that is formed between the Z' axis and the u vector; it is 
considered positive if oriented clockwise respect the Y' axis; it varies between [-90°,90°]; 

− Azimuth angle θθθθ is the angle formed between the axis X' and the projection of the vector u on the 
X'Y' plane; it is considered positive if oriented anticlockwise respect the Z' axis; it varies in the 
interval [0°,360°). 

The points to obtain the two angles are: 
− Pprov ≡  (Xprov, Yprov, Zprov) =  provenience point of the ray;  
− Osource ≡ (Xsource, Ysource, Zsource) = source origin; 
− Orec ≡ (Xrec, Yrec, Zrec) =  receiver origin; 
− Ptarg ≡ (Xt, Yt, Zt) = receiver target point. (obs: if the reflection number is zero ⇒  Pprov = Osource). 

Their co-ordinates are related with the absolute reference frame; to calculate the two angles is 
suitable to execute a co-ordinates transformation, expressing them in the relative frame. The basis 
versors in the absolute frame is considered as {e1, e2, e3} and those in the relative frame as {e'1, e'2, e'3}, 
orthogonal Cartesian terns with the mutual point of origin (XYZ reference frame is translated in Orec). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 - α and β angles, formed between the two terns of the reference frames 
 
The possible angles that the two terns can form between them are two (they can be interpreted as a 
particular case of Eulero angles): 

1. the angle between the XY plane (translated in Orec) and the X'Y' plane; indicate as ββββ; 

2. the angle between the projection of the Y' axis on the XY plane (translated in Orec) and the Y axis 
(obs.: owing to the translation the projection of Y' coincide with the same axis); it is indicate  αααα. 
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Calculus of the αααα and ββββ angles The two angles are obtained by the target point Ptarg ≡ (Xt, Yt, Zt) 
coordinates, expressed in the absolute reference frame. 
Considering the XYZ absolute frame (translated in Orec), the expression of  ββββ becomes: 
 

(1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 – Angle β 

 
In the same way, using the function arctg(x), it is possible to calculate the angle αααα, observing in 

which quadrant the projection of Ptarg fall in the XY plane (translated in Orec). 
 
 
 
 

quadrant where  x-Xrec >0 , y -Yrec ≤0 

          Yt-Yrec                    ⇓  
      αααα            Xt-Xrec           αααα = −−−− arctg [(Yt−−−−Yrec )/( Xt−−−−Xrec)] 
 
        
 
 
 

       Fig. 3 – Angle α 
 
      likewise:  
 
quadrant where  x-Xrec ≤0 , y -Yrec <0  ⇒⇒⇒⇒     αααα = arctg [(Xt−−−−Xrec)/(Yt−−−−Yrec)] + 90°; 

fall the projection  x-Xrec <0 , y -Yrec ≥0   ⇒⇒⇒⇒     αααα = −−−− arctg [(Yt−−−−Yrec)/(Xt−−−−Xrec)] + 180°; 

of Ptarg   x-Xrec ≥0 , y -Yrec >0  ⇒⇒⇒⇒     αααα = arctg [(Xt−−−−Xrec)/(Yt−−−−Yrec)] + 270°; 

 

(if  x-Xrec = 0, y -Yrec = 0 ⇒     α = 0). 

( )
( ) ( ) 
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After obtaining αααα and ββββ, the rotation matrix RT that describes the components of the basis {e1, 
e2, e3} on the basis {e'1, e'2, e'3} becomes:  
 
         cosβ cosα  − cosβ senα  senβ   

  RT  =           senα         cosα    0  .     (2) 

      − senβ cosα     senβ senα   cosβ 

To consider the translation too, from the point of origin O = (0,0,0) to Orec = (Xrec, Yrec, Zrec), the lines-
columns product: 
 

x''      x − Xrec 

y''     =  RT    y − Yrec    ;       (3) 

z''      z − Zrec 
 
gives the transfer from the (x,y,z) coordinates of a point P, expressed in the absolute reference frame, to 
the respective (x', y', z'), expressed in the relative reference frame. 
 
 

CALCULUS OF THE ELEVATION ϕϕϕϕ AND AZIMUTH θθθθ ANGLES 
 

By the lines-columns product (3) is possible to have the Pprov coordinates in the relative reference frame, 
indicated as (x'prov, y'prov, z'prov). 

The ELEVATION ϕϕϕϕ angle (fig. 4) is simple to obtain, because it is the complementary of the 
angle between the vector u of the sound ray and the Z' axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4 – Elevation angle ϕ 
 

Using the Pprov coordinates in the relative frame, the ϕϕϕϕ angle is the complementary of the angle 
formed between the vector (x'prov, y'prov, z'prov) and the Z' axis versor (0,0,1): 
 
 

(4) 
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The projection of Pprov on the plane X'Y' (that is Z' = 0) is given putting z'prov = 0 (x'prov and y'prov 
remain the same). The AZIMUTH θθθθ angle (fig. 5) is therefore the angle between the vector (1,0,0), 
versor of the X' axis in the relative reference frame, and the vector (x'prov , y'prov, 0), positive oriented 
anticlockwise respect the Z' axis. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 – Azimuth angle θ 
 

 
Since the angle can vary from 0° to 360° and the arccos(x) function give only the smaller angle 

between the two vectors, that is:            
 

 

             ,    (5) 
 
 

The angle θ* found by the (5) is the right one and not the complementary, provided its direction, 
given by the product (1,0,0)∧ (x'prov , y'prov, 0), is concordant or discordant with the Z' axis versor; that 
means to analyse the sign of the determinant of the matrix:  
 

    1        0  
         M   = 

   x'prov   y'prov 
 
− if    y'prov  > 0     ⇒⇒⇒⇒    θθθθ = θθθθ*; 
− if    y'prov  < 0       ⇒⇒⇒⇒    θθθθ = 360° −−−− θθθθ*; 
− if    y'prov   = 0 ⇒⇒⇒⇒  if x'prov ≥≥≥≥ 0  ⇒⇒⇒⇒     θθθθ = 0°; 

if x'prov < 0  ⇒⇒⇒⇒     θθθθ = 180°. 
 
 

THE CHOICE AND THE INTERPOLAZION OF THE HRTFs 
 

After having computed the Elevation ϕϕϕϕ and Azimuth θθθθ angles with which the sound ray arrives at the 
listener ears, the appropriate HRTFs to interpolate to use in the signal filtering must be chosen. After the 
observation of a large number of measurements made at M.I.T.[1] with a KEMAR dummy-head, a 
triangular interpolation have been preferred, because the number of measurements about the Azimuth 
angles is not constant, as described in table 1.  
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Elevation ϕϕϕϕ (°)   Number of 
Measurements  

    Azimuth   
Increment (°) 

!90 1 *** 
!80 12 30 
!70 24 15 
!60 36 10 
!50 45 8 
!40 56 6.43 
!30 60 6 
!20 72 5 
!10 72 5 

0 72 5 
 

Tab. 1 - Number of measurements and azimuth increment at each elevation (at M.I.T.). 
 

Supposing to fix on a spherical surface (with unit radius) the points sampled, performing a 
triangulation among them the sound ray will fall in a specific triangle (fig. 6). 

 
                      Pprov 

 
Fig 6 - Schematisation of a triangulation operated on a spherical surface. 

 
Consider the lower and the higher then ϕϕϕϕ elevation angles at which was sampled the 

measurements; after having selected the two corresponding circumferences and, likewise, the lower and 
the higher then θθθθ elevation angles, four couples of angles (ϕϕϕϕi, θθθθi) have therefore been selected, placed in 
the vertices V1,V2,V3,V4 of two adjacent triangles. In one of these falls the sound ray (fig. 7). 
 
 
 
 
 
      Fig. 7 – Selection of  
        the vertices 
 
 
 
 

Consider the distances among the point U, projection of the intersection between the ray and the 
sphere on the obtained figure, and the four vertices: DU1, DU2, DU3, DU4. Consider the triangle having the 
vertices corresponding the three lowest distances. The ray could fall in it, but could happen as in fig 8b.  
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Suppose that the ray falls into the triangle (fig. 8a). The three HRTFs (in the figure related at the 
vertices V1,V3,V4) are regarded as  the “extremes” of the interpolation; the weight Pi (i = 1,3,4) relative 
each one is obtained calculating the opposite triangle area (in fig 8a the area V1V3U is referred to the 
vertex 4) and dividing it for the total initial triangle area; so we have P1+P3+P4 =1.   

When U is out the chosen triangle (fig. 8b) it results P1+P3+P4 >1. The adjoining triangle have to 
be selected. It has the vertices so defined: Reconsider the vertex with the longest distance and indicate it 
with k; put j = 5−k; remove the vertex with j index. The three remaining vertices forms the new triangle.  
 
 

THE WEIGHTS CALCULATION 
 

Consider V1 = V1(ϕϕϕϕ1,θθθθ1), V2 = V2(ϕϕϕϕ2,θθθθ2), V3 = V3(ϕϕϕϕ3,θθθθ3) the vertices of the chosen triangle (where falls 
U) and calculate their Cartesian coordinates:  

X = cos(ϕ)*cos(θ)    Xi = cos(ϕi)*cos(θi) 
Y = cos(ϕ)*sen(θ)     vertex U ;   Yi = cos(ϕi)*sen(θi)     vertex Vi    (i=1..3). 
Z = sen(ϕ)      Zi = sen(ϕi) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 – Example: ϕϕϕϕ = 66,5°, θθθθ = 17,3°; V1=V1(70°,15°); V2=V2(60°,10°); V3=V3(60°,20°). 
 

Calculate the distances among vertices V1,V2,V3  and those among vertex U e V1,V2,V3: 
    D12 = [(X1-X2)2+(Y1-Y2)2+(Z1-Z2)2]1/2 DU1 = [(X-X1)2+(Y-Y1)2+(Z-Z1)2]1/2 
    D13 = [(X1-X3)2+(Y1-Y3)2+(Z1-Z3)2]1/2  DU2 = [(X-X2)2+(Y-Y2)2+(Z-Z2)2]1/2 
    D23 = [(X2-X3)2+(Y2-Y3)2+(Z2-Z3)2]1/2  DU3 = [(X-X3)2+(Y-Y3)2+(Z-Z3)2]1/2 
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To determine the triangle areas the Erone' formula can be utilised:  
 

          (6) 
 
with a,b,c length of the sides and S the half-perimeter.  

The half-perimeter Smax of the bigger triangle and those Si of the opposite vertex triangles are: 
   Smax = (D12+ D13+ D23)/2;   S1 = (DU2+ DU3+ D23)/2; 
   S2= (DU1+ DU3+ D13)/2;   S3 = (DU1+ DU2+ D12)/2; 

their areas are: 
 

− ATOT = [Smax*(Smax− D12) *(Smax− D13)*(Smax− D23)]1/2; 
− A1 = [S1*(S1− DU2) *(S1− DU3)*(S1− D23)]1/2; 
− A2 = [S2*(S2− DU1) *(S2− DU3)*(S2− D13)]1/2; 
− A3 = [S3*(S3− DU1) *(S3− DU2)*(S3− D12)]1/2. 
 

The weights are so given by the expressions: P1 = A1/ATOT;  P2 = A2/ATOT;  P3 = A3/ATOT.  
 

The final HRTF to use in the filtering (one of two, the other has complementary Azimuth angle) is: 
 

   (7) 
 

meaning that symbolic script an interpolation in the time domain, witch separately mediates the 
modulus and the phase of the complex spectrum.  
 

CONCLUSIONS 
 
The methods to preserve the sound “tridimensionality” of an audio event become always more 
important. Besides in the recording and the reproduction, they are quite important in data processing 
software also. Furthermore, these methods allows to observe (and often to listen to) the results 
obtainable in the real event without the need to carry out it. 

Among the various techniques one of the more effective is the “binaural”: it uses a special 
dummy-head for the sound recording and a headphone for the reproduction. The formulas set described 
in this article form a mathematical model utilisable in prediction software. By the calculation of the 
Elevation and Azimuth angles between the sound ray and the relative reference frame the more 
appropriate HRTFs for signal filtering can be chosen, including the effects generated by the head. 

The triangular interpolation chosen is a very good approximation of that (exact) “curvilinear 
triangles” formed on the spherical surface. This methods allows much better results than considering 
only the orthogonal projections on the plane containing the three extreme HRTFs. Because of the unit 
radius of the sphere the differences are almost null, with the advantage to have calculation times 
considerably reduced. 

The use of a model as that here described allow to come close the sound truth with prerogatives 
not consented to conventional methods. 
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